¿Se puede reparar una batería agotada?


Cuando una batería esta mucho tiempo descargada , o muy vieja , etc… se dice que se ha «sulfatado» porque básicamente , se forman  sales de plomo y azufre (sulfato-de-plomo) que se adhiere a la placa esponjosa del negativo  bloqueando las reacciones químicas. Normalmente llegado a esta batería se da por perdida para siempre y se reemplaza por otra nueva….

Con un poco de astucia ( y sobre todo que ahora que el plomo vale tres  veces mas  ) , las viejas  baterías incluso aunque no sean de plomo o gel (NiCD  o iones de Litio)   aun se puede alargar su vida util¿pero cómo?Pues  vamos a ver dos métodos,  siendo el primero útil solo para las baterías de plomo o las gel de Pb y el segundo método  idóneo para todo tipo de baterías  (Pb ,Gel de Pb  ,NiCd, Li+, etc )

El segundo método como vamos  a ver es el mas efectivo y seguro  !incluso  puede ser útil en caso de emergencia para recuperar combinaciones de pilas domesticas alcalinas!

ATENCIÓN: NO NOS HACEMOS RESPONSABLES DESDE ESTE SITIO DE LOS POSIBLES ADVERSOS  Y PELIGROSOS QUE PUEDAN OCURRIR  EN EL TRANSCURSO DE INTENTAR RENOVAR UNA BATERÍA AGOTADA

 SI INTENTA RECUPERAR UNA BATERÍA AGOTADA PROTÉJASE OJOS  ; BRAZOS Y MANOS   EXTREMANDO LA PRECAUCIÓN.

SOLO INTENTAR EN CASO DE EMERGENCIA   Y CUANDO DEMOS POR PERDIDA LA BATERÍA PUES TENGA EN CUENTA QUE EN  TODO CASO PODEMOS RECUPERAR SOLO EN UN TANTO POR CIENTO LA CAPACIDAD TOTAL DE LA BATERIA QUE DEPENDERÁ DEL ESTADO EN QUE SE ENCUENTRE

METODO  1: AÑADIR AGUA DESTILADA  (BATERÍAS DE GEL O PLOMO)

Bueno la cuestión es que las baterías de plomo ácido  modernas  o las de gel  el electrolito está gelificado y absorbido en los aisladores de entre las placas, que en vez de ser rígidos, son una especie de paño sintético, son baterías «libres de mantenimiento».Con el correr del tiempo esta se secan, lo mismo que cuando las baterías del auto se quedaban sin agua. Así que el truco consiste en sacar los taponcitos de goma que hay debajo de la tapa que ya sacamos y reponerle líquido (pueden ser dos y hasta tres tapas, según el fabricante)

Para intentar reparar la batería necesitará:

  •  Jeringa de 3 cm
  •  Voltímetro o multímetro
  •  Cargador de batería o fuente de alimentación
  •  Los cables de cocodrilo «que se utiliza con la fuente de alimentación»
  •  Agua destilada
  • Muy importante por su seguridad : gafas  y guantes químicos

Atención !No toque el agua que puede salir  de la batería pues  es ácido que al ser tan  corrosivo podría generarle quemaduras muy graves

El método  es valido  para intentar reparar  baterías de gel, compuestas por ácido y plomo simplemente agregando agua destilada en sus celdas para reactivar su carga original pero también es funcional para baterías de plomo selladas.  El método   funciona en el 90% de  los casos pero en caso de recuperarla  la batería funcionará entre el 50% ~ 70% de la capacidad  que tenia.

 

PASOS A SEGUIR:

  1. En la batería sellada nos encontraremos con tapa en la parte superior de la batería:simplemente eliminarlo  poco a poco con un destornillador plano hasta el final donde  nos encontraremos con 3 agujeros cubiertos por tapas de goma. Ahora tenemos que eliminar esta capsula también.
  2. Ahora vamos a medir voltios de esta batería. Por ejemplo  puede ser una lectura de 0,76 voltios,lo cual quiere  decir que la batería esté completamente seco desde el interior
  3. Ahora lo que necesitamos en esta etapa es llenar la batería con agua destilada para activar el ácido de nuevo, por lo tenemos que volver a llenarlo con una jeringa poco a poco o hasta que el agua salga de todos los agujeros y medir la tensión:si  se encuentra que aumentó en mVolts, eso es bueno, así que no se  preocupe
  4. Después de llenar la batería con el agua que necesitamos para asegurarnos de que se mezcla con ácido seca dentro de la batería para reactivar de nuevo  ésta
  5. Debería utilizar cualquier  un cargador   adecuado  a la tensión de la batería y conectarlo  a los bornas
  6. Ahora bien, esperar 5 minutos hasta ver que las burbujas salen de los agujeros. Si no hay burbujas o provienen de cualquiera de los 3 agujeros puede  invertir negativo y positivo y esperar 1 ~ 3 min  máximo (ESTO ES MUY PELIGROSO POR LO QUE DEBE ESTAR PROTEGIDO  Y POR  ELLO  NO DEBE DEJARLA SOLA NI SOBREPASAR EL TIEMPO MÁXIMO DE 3 MINUTOS)
  7. Si salen de los agujeros demasiado rápido como hirviendo cortar de inmediato la alimentación y vuelva a conectar negativa y positiva la derecha de nuevo
  8. Cuando el proceso este regularizado ( salen burbujas por todos los agujeros ) ha terminado el proceso así que puede sacar el  agua no consumida de la parte superior de 3 agujeros con una  jeringa y dejar de cargar la batería
  9. No cubra los agujeros hasta que se recupere la  tensión de la batería (debería  comprobarlo  cada  hora)
  10. Cuando  se seque  el tejido ya puede  cubrir todas los agujeros   reponiendo todos los tapones sacados  en el punto 1
  11. !Felicidades su batería está funcionando de nuevo !

Si quiere saber mas detalles de este proceso  consulte este instructable

MÉTODO 2  :  USO DE UN PUENTE DE DIODOS  Y UN CONDENSADOR

Existe un método bastante práctico ,económico y bastante mas seguro que el método anterior para intentar reparar  todo tipo de baterías  (Pb ,Gel de Pb  ,NiCd, Li+, etc )

La versatilidad del  método es tal que incluso   puede ser  utilizado en caso de emergencia para recuperar combinaciones de pilas domesticas alcalinas,pero eso si ,solo  «pilas »  alcalinas ,basándose es que realmente este tipo de pilas ,aunque le parezca increíble , en realidad si son recargables.

Para intentar reparar una batería necesitará:

  • Un puente de diodos de potencia de 50A  y 10ooV ,como por ejemplo  el modelo KBPC 5010( puede conseguirlo aqui )
  • Un radiador para el diodo
  • Un condensador  entre 10mF a 50mf  1000V no polarizado (dependerá de la capacidad de la batería a recargar). Puede conseguir uno de 2omf y 400V aqui 
  • 2 bornas de cocodrilo
  • 1 cable AC

El Recuperador y cargador de baterías  se basa  en  que las baterías  dejan de admitir carga por la sulfatación de las placas, limpiando  mediante este sistema  el sulfato entre las placas reviviendo las baterías hasta un 85 % de cuando eran nuevas. En el 90 % de los casos son recuperables por bastante tiempo mas de uso usando este sistema

El circuito como puede ver en  el esquema de mas abajo ,no puede ser mas simple ,  pues  como adelantábamos,   solo se utiliza un puente de diodos de potencia ( es muy conveniente acoplarle de hecho un radiador ) y un condensador  no polarizado  de unos 400V  (normalmente usados en el arranque de  motores de alterna)

supercargador

Como punto muy importante,para seleccionar el condensador  es qeu debe estar dimensionado para que no proporcione mas de 1/1o la intensidad máxima soportada por la batería , es decir la batería debe ser cargada con un 10 % del amperaje total de la misma.

Por ejemplo  si la batería tiene una capacidad de 10 amperios/hora  (10AH) , la carga deberá ser como máximo de 1 amperio, regulándose precisamente este amperaje  con la capacidad del condensador (a mayor capacitancia, mayor amperaje de carga),resultando  el voltaje   de salida que recibirá la batería  variable yendo  acomodándose  a medida que adquiera carga

Es muy importante anotar  que la tensión de alimentación de  este circuito sera de 220 o 110 voltios de alterna por lo que habrá que extremar la precauciones  sobre todo a la hora de manipular el circuito,

Como referencia  tenemos aquí una tabla que relaciona  capacidades de condensadores para obtener la corriente necesaria:

4,5V ( 3 pilas AAA en serie) 1,5mF
 5,5V /4 pilas AA en serie)  1,5mF
 bateria de 12V 1,2AH  2,5mF
 Bateria de 3,7V Iones Litio 2,2AH  2,5mf
 Bateria de gel 12v 2,3AH  3,75mf
 Bateria de gel de 4v  4,5AH  5mf
 Bateria de gel 6v 5AH 5mf
 bateria de gel  12v 4,5AH  5mf
 Bateria de gel 12v  7AH  10mf
 Bateria de gel  12v 12AH  15mf
 Bateria Pb 12v  45AH  50mF
   

Nota: si no se dispone o no conoce la capacidad del condensador necesaria  empiece  por la mas baja  y vaya subiendo el valor de este. Si no dispone de condensador de la capacidad adecuada también puede asociar condensadores en paralelo para obtener la capacidad necesaria( en paralelo se suman las capacidades)

Es muy interesante  destacar que, como básicamente  el método para obtener la corriente adecuada esta basado en la experimentación , es muy interesante  que en la carga usemos un voltímetro  y un amperímetro para vigilar  tanto la tensión de la batería  como la corriente absorbida , variando en función de esto el condensador  siguiendo la regla de no superar 1/10 el valor de la capacidad de la batería.

Y un ultimo apunte:  el tiempo necesario dependerá de  la capacidad de la batería : como sabe la capacidad en amperios x hora y sabe la corriente aplicada  en amperios simplemente    tendrá que  dividir  ambos valores para obtener el tiempo en horas  necesarias para  que este cargado su batería

NOTA: Si la tensión es anormalmente alta o muy baja  es síntoma de que la batería no se puede recuperar…!lo siento!

Dimensionamiento de baterias en embarcaciones electricas


Si tiene desventajas, a priori, también se adivinan los numerosos datos favorables o beneficios que pueden aportar los vehículos eléctricos  a corto plazo:son más agradables de conducir,  los motores eléctricos dan más par a bajo régimen de revoluciones y su comportamiento es más lineal,permiten una reducción de las emisiones contaminantes notable, su respuesta es más inmediata y generan menos ruido que un motor térmico. También puede citarse la posibilidad de recuperación de energía en las desaceleraciones  ¿pero como elegir  la  batería mas adecuada para  nuestro motor (intraborda o fueraborda ) electrico?

COMO ELEGIR LA BATERÍA NECESARIA PARA UN MOTOR ELÉCTRICO

Los acumuladores eléctricos almacenan energía eléctrica para utilizarla posteriormente transformando la energía química en energía eléctrica.
Las características de una batería son:

  •  El voltaje que suministra:se mide en Voltios y en las instalaciones de los barcos suele ser de 12 V. Para que una batería nos proporcione 12 V. ha de estar compuesta por seis elementos,y cada electrodo tiene que proporcionar un voltaje entre 1,8 y 2,2 voltios. La batería está descargada cuando esté en 10,8 voltios y a plena carga cuando esté en 13,2 voltios.
  • Su capacidad,es la cantidad de corriente que puede proporcionar, midiéndose en amperios/hora.

No se deben usar baterías de arranque de automóvil para alimentar un motor eléctrico porque las baterías de arranque están diseñadas para entregar la energía almacenada en breves descargas de gran amperaje que se realizan de manera muy espaciada. Si a una batería de arranque le solicitamos una entrega de por ejemplo, 25 A de manera continuada, esta batería no será capaz de entregarnos la energía que tiene acumulada (los amperios-hora) ya que esta entrega continuada la “asfixia” al cabo de un rato. Use baterías de ciclo profundo, a ser posible de tecnología AGM, diseñadas para este tipo de trabajo. Estas baterías sí serán capaces de entregar el amperaje solicitado durante el tiempo previsto y durarán muchos ciclos de carga-descarga.

Absorbent Glass Mat (AGM) es un tejido de fibra de vidrio absorbente que contiene el ácido de la batería. Las baterías de plomo tipo AGM son más seguras y ligeras y por tanto más avanzadas.
La tecnología AGM fue desarrollada en 1985 para los aviones militares que buscaban reducir el peso y aumentar la capacidad de carga de los aviones. En las baterías de tipo AGM el ácido sulfúrico de cada vaso es absorbido por una capa muy  delgada de fibra de vidrio comprimida con el aspecto de un fieltro, que asegura los problemas frente a posibles derrames de ácido en caso de rotura.  Son baterías mucho más seguras frente a vibraciones y posibles roturas, y por esta razón se suelen escoger en vehículos de competición ,para caravanas , para vehículos con función start-stopy  y por supuesto  también para usos náuticos.
Por esta razón las baterías AGM pueden ser transportadas de forma mucho más segura y sin restricciones por peligrosidad. Cada vaso puede se fabricado de forma rectangular o enrollados en forma cilíndrica.

agm

Las baterías AGM tienen una resistencia interna muy baja que las permite entregar corrientes muy altas y tienen además una vida útil bastante larga, incluso al someterlas a ciclos de descarga profundos. Las AGM son baterías selladas estancas sin mantenimiento, y como ya hemos comentado, más ligeras que las baterías de ácido-plomo normales.

Además se comportan bastante bien incluso con bajas temperaturas lo cual se agradece en invierno, y ofrecen una autodescarga reducida. Pero las ventajas de las AGM continúan frente a las normales pues admiten una recarga de hasta 5 veces más rápida, en caso naturalmente de que nuestro cargador entregue suficientes amperios.

El precio de este tipo de batería  es algo mas elevado que su homologas las de Plomo convencional  pero dese luego mucho mas asequibles a  igualdad capacidad  que las de Nq-cd o las de iones de Litio . Como ejemplo una de batería de 12V  y  100AH  del tipo AGM nos puede costar unos 200€

Es muy importante destacar que las baterías se pueden acoplar en serie o paralelo según necesitamos una mayor tensión o  capacidad que las ofrecidas por baterías estándar.

También  se pueden asociar  de forma conjunta en serie y en paralelo para obtener una determinada capacidad   y tensión fuera de  la «estándar»

En cualquier composición de baterías es muy importante tener en cuentas las siguientes consideraciones:

  • Todas las baterías usadas deberían ser similares en capacidad , tensión,modelo ,tamaño tipo y antigüedad (a ser posible todas nuevas)
  • Las conexiones deben ser  lo mas cortas posibles y de parecidas dimensiones entre todas las conexiones para asegurar que no haya asimetrias.
  • Debe mantenerse igualdad de longitud de cables
  • La sección de los cables hay que recordar que dependerá de la longitud del conductor y de la corriente máxima que debe soportar en DC
  • Para la unión de cables se deben usar  bornas o terminales ,las cuales  deben usarse especificas para uso marino  por el problema de la humedad
  • Las conexiones centrales deben apoyarse en regletas de conexiones dimensionadas para la corriente que van a soportar
  • Es muy conveniente un interruptor general de corte cerca de estas
  • Es muy interesante también usar con desconectadores rápidos que ante una emergencia nos permitan aislar una sección de baterías

baterias

En el ejemplo de la imagen superior ,como vemos,  tenemos dos asociaciones de 4 baterias de 12V en serie por ramal , que nos dan una salida de 12+12+12+12=48 voltios por ramal

Como  hay dos bloques de 48 V en paralelo, la capacidad total sera la suma de ambos bloques, Por ejemplo si cada batería es de 100AH y 12V , en conjunto esta asociación tendría una capacidad de 48V 200AH

 

En cuanto a la instalación del banco de baterías ,se suelen instalar en cajas cerradas pero con ventilación de persianas para que no entre el agua. Procuraremos no estibar objetos dentro de la caja de baterías y la mantendremos siempre limpias y secas. Esta caja estará firmemente sujeta para que no sufra desplazamientos con los movimientos del barco. Su instalación será lo más cerca posible del cuadro de distribución.

 

 

Muy sucintamente para calcular la  asociación de baterías que necesita puede seguir los dos siguientes pasos:

1. Calcule los amperios que consume su motor, con la siguiente fórmula:

Empuje en libras / Voltaje del motor x 12 = Amperios que consume.

Por ejemplo: 55 libras de empuje /12 Voltios x 12 = 55 Amperios 55 libras de empuje /24 Voltios x 12 = 27,5 Amperios 55 libras de empuje /36 Voltios x 12 = 18,3 Amperios

 Nota:Aunque tengamos un motor de 55 libras de empuje, probablemente no lo vamos a usar continuamente al 100% de potencia, por lo que deberemos estimar el % de potencia media usada.

2.  En función del número de horas seguidas que desea de autonomía, seleccione la batería necesaria. Por ejemplo: Con un motor que consume 55 Amperios, que usaremos a una media del 75% de su potencia, deseamos una autonomía de 3 horas Batería necesaria = consumo en amperios x % de potencia x horas de funcionamiento x 1,3 = 55 A x 0,75 x 3 h x 1,3 = 160,88 Ah.

 

Como seleccionar un cargador de baterías

 

Cargamos las baterías por medio de un cargador de baterías,(que puede ser automático), conectando el positivo del cargador con el positivo de la batería y el negativo con el negativo.

El cargador debería tener  un interruptor para abrir o cerrar el circuito ,un amperímetro para  medir la intensidad de la corriente,,un voltímetro que indique el voltaje de carga y un disyuntor que impide la descarga de la batería.

No use un cargador  económico ” de tensión constante pues su batería no se cargará al 100% y su vida se acortará (menos ciclos de carga-descarga).Lo recomendable sería usar  un cargador automático digital de tres fases.

Si decidimos montar el cargador  en la propia embarcación ,lo ideal es colocarlo en un lugar con ventilación y aireado puesto que para altas corrientes  de carga los cargadores suelen usar disipadores activos , muy   cerca del banco de baterías ( así nos ahorraremos sección de conductor)

Obviamente la entrada de ca  ira al cuadro de distribución de ca, el cual se alimentará normalmente de una conexión estanca abierta accesible por el exterior , para poder  conectarlo a la red general del puerto

 

cargador

 

Muy sucintamente para calcular su cargador de baterías que necesita puede seguir los tres siguientes pasos:

  • Determine cuántas baterías desea cargar simultáneamente.
  •  Sumar los amperios-hora de todas las baterías que desea cargar simultáneamente
  • Seleccione el cargador automático que cumpla sus requisitos, eligiendo en caso de necesitar una corriente no estándar,  el de corriente inmediatamente superior.

Ejemplos:

  • 1 batería de 100 Ah (C20h). Necesita un cargador a 12 V con una salida y una capacidad para 100 Ah..
  • 2 baterías de 132 Ah (C20h) cada una, conectadas en paralelo (el motor funciona a 12 V). Necesita un cargador a 12 V con dos salidas y una capacidad para 260 Ah. 
  • 2 baterías de 86 Ah (C20h) cada una, conectadas en serie (el motor funciona a 24 V). Puede usar o bien un cargador a 12 V con dos salidas y una capacidad para 172 Ah  o bien un cargador a 24 V con una salida o más y la misma capacidad de 182 Ah .

 

Resumidamente en el siguiente esquema podemos ver una configuración típica de una instalación de 48V para un uso marino  donde ademas se han incluido ademas delas barras generales , el interruptor de emergencia   y   dos fusibles para carga y de utilización:

INSTALACION COMPLETA