Mucho cuidado con circuitos mal diseñados para obtener una mayor corriente


El LM317 es un todo un clásico: un regulador de tensión lineal ajustable que proporciona una salida de entre 1,2 y 37 voltios con una corriente máxima de 1,5 A. Sus terminales principales son entrada (IN), salida (OUT) y ajuste (ADJ), y solo requiere dos resistencias externas para fijar el voltaje deseado. Incluye protecciones contra sobrecarga, limitación de corriente y exceso de temperatura, lo que lo hace más robusto que reguladores fijos. Funciona como regulador flotante, tolerando hasta 40 V de diferencia entre entrada y salida, y suele necesitar pocos condensadores si está cerca de los filtros de alimentación. La salida mínima estable es de 1,25 V, ideal para fuentes de laboratorio o proyectos con motores y LEDs.​

Para configurarlo, debemos conectar un resistencia fija (como 220-240 Ω) entre OUT y ADJ,y un potenciómetro (5 kΩ) entre ADJ y masa para ajustar el voltaje. En módulos comerciales step-down, el potenciómetro ya está integrado, aceptando entradas de 4-40 V y entregando hasta 2 A con disipador. Para corrientes mayores, se acopla con transistores como TIP35 o se usa el LM350.

Este CI se emplea en fuentes de alimentación variables para prototipos, control de motores DC o estabilización de voltajes en IoT y electrónica embebida. En entornos como Arduino o ESP32, es útil para generar 3,3 V o 5 V estables desde baterías de 12 V. Requiere un disipador si la diferencia de voltaje genera calor significativo.

Ejemplo de Implementación

Este circuito utiliza el IC LM317 como regulador de voltaje variable. El voltaje de salida puede ajustarse entre 1,5V y 24V mediante el potenciómetro de 5KΩ. El condensador de 1000µF filtra el voltaje de entrada para mantenerlo estable, mientras que el condensador de 10µF en la salida reduce el rizado. La resistencia de 270Ω actúa como limitador de corriente de referencia para la regulación de voltaje.

Ejemplos de circuitos mal diseñados para obtener una mayor corriente

Es posible aumentar la corriente de salida del circuito anterior usando mosfet de potencia, pero no al modo de muchos tutoriales que existen circulando por la red. Aunque sí, es factible construir una fuente de alimentación regulada ajustable de hasta 40 A utilizando el LM317 con MOSFETs como el IRF4905 (P-channel, hasta -74 A, -55 V) , mucho cuidado con usar esquemas no verificados disponibles en redes sociales pues en muchos casos no van a funcionar. ​El LM317 solo soporta 1.5 A de forma nativa, y de hecho se puede combinar con MOSFETs en paralelo para desviar la corriente extra mientras el IC controla el voltaje de salida (típicamente 0-35 V). Circuitos probados usan varios IRF4905 conectados al OUT/ADJ del LM317, con una resistencia de puerta (como 10 Ω/10 W) para activación. Obviamente se necesitaran disipadores masivos con ventilador y un potenciómetro para ajuste.​​

En muchos esquemas disponibles en redes sociales aparece el IRF4505 que no debería estar en diseños estándar (posible error tipográfico por IRFP450, N-channel de 14 A/500 V, no compatible directamente), pero múltiples IRF4905 en paralelo si podrían alcanzan 40 A con baja Rds(on) de 0.02 Ω. Requiere entrada DC > salida + dropout (~3 V), protección contra cortos y buena refrigeración para evitar sobrecalentamiento.

El esquema erróneo es el siguiente (NO probar porque no funcionará):

La imagen muestra un módulo regulador de voltaje teórico basado en el LM317, diseñado para manejar corrientes elevadas (hasta 40 A) gracias al uso de transistores MOSFET de potencia IRF4905 e ¿IRF4505(MAL)?. En el diagrama esquemático revela los siguientes detalles:

  • Entrada de alimentación de 12 a 30 V DC.
  • El LM317 configurado para regular el voltaje.
  • Transistores MOSFET que permiten entregar altas corrientes.
  • Un regulador LM7812 para alimentar un ventilador de refrigeración.
  • Conexiones opcionales para un voltímetro externo.

Hay algunos detalles en el esquema que nos pueden dar que sospechar: claramente falta el potenciómetro para ajustar el voltaje de salida y claramente el segundo mosfet debería ser también un IRF4905 (hay un error tipográfico pues pone IRF4505) .Además los mosfet estan claramente mal conexionados pues en ambos cortocircuitan dos terminales (drain y source) y lo peor !en ambos transistores!. Además por si fuera poco se muestra una imagen (mas abajo) claramente generada con IA con las conexiones igualmente incorrectas ( obsérvese por ejemplo lo sospechoso de los cables rojo y negro que parecen salir de las clemas de entrada y salida):

En resumen hay que tener mucho cuidado pues con los esquemas de circuitos generados por la IA o por algunos aficionados porque no siempre son correctos como vemos en este ejemplo .

Circuito inversor simple con CD4047 y ULN2003 – Convierte 12V DC en 230V AC fácilmente


Cuando se va la luz, tener una fuente alternativa de energía puede marcar la diferencia. Este sencillo circuito inversor permite convertir una batería de 12 V DC en una salida de 230 V AC utilizando dos integrados muy comunes: CD4047 y ULN2003. Es una opción económica, didáctica y útil para alimentar pequeños dispositivos como bombillas, ventiladores o cargadores en situaciones de emergencia.

Cómo funciona el circuito

El «cerebro» del inversor es el IC CD4047, configurado como multivibrador astable. Su función es generar dos señales cuadradas de 50 Hz con una desfase de 180°, que servirán para activar alternativamente cada mitad del transformador.

Estas señales se envían al IC ULN2003, un conjunto de transistores Darlington que amplifican la corriente, permitiendo accionar los transistores de potencia o MOSFETs que manejan la carga real del transformador.

El transformador con toma central eleva la tensión de los 12 V DC de la batería hasta unos 230 V AC en la salida.
Si se desea una forma de onda más limpia, puede añadirse un condensador de filtro en paralelo con la salida.

Componentes principales

  • CD4047 – Oscilador y temporizador.
  • ULN2003 – Conjunto de transistores Darlington para conmutación.
  • Transformador con toma central – Eleva la tensión de 12 V a 230 V.
  • Resistencias y condensadores – Ajustan la frecuencia y suavizan la señal.
  • Batería de 12 V – Fuente de alimentación principal.

Montaje paso a paso

  1. Configurar el CD4047 como astable: Coloca las resistencias y condensadores indicados para que oscile a 50 Hz, generando señales cuadradas alternas en los pines 10 y 11.
  2. Conectar salidas al ULN2003: Los pines de salida del CD4047 van a las entradas del ULN2003, que amplificará la señal para controlar los transistores de potencia.
  3. Unir ULN2003 a los transistores o MOSFETs: Estos componentes serán los encargados de conmutar la corriente suministrada al transformador.
  4. Conectar el transformador: El primario con toma central se conecta a los colectores/emisores de los transistores para que transforme los 12V DC en 230V AC.
  5. Incluir filtros opcionales: Puedes añadir un condensador para suavizar la salida de AC y obtener una señal más estable.
  6. Alimentación: Conecta la batería de 12V para energizar todo el conjunto.

Ventajas del diseño

  • Bajo costo y fácil de montar (se puede montar en una placa de prototipos o comprarlo ya montado en la majoria de las tiendas online especializadas).
  • Totalmente operativo con una simple batería de 12 V.
  • Produce una salida de onda cuadrada modificada de hasta 230 V AC.
  • Ideal para proyectos educativos, experimentación o uso en pequeñas emergencias.

Una excelente opción para aprender electrónica práctica

Este inversor representa un ejercicio perfecto para estudiantes y aficionados que desean comprender el principio de conversión DC–AC sin recurrir a circuitos complejos. Su construcción permite aprender conceptos esenciales como temporización, conmutación y elevación de tensión mediante transformador. Además, puede mejorarse fácilmente añadiendo indicadores LED, protecciones o convertidores con onda senoidal pura…

Limitaciones y desventajas de este circuito

Una ventaja clara : el coste y el reducido espacio que ocupa , pero veamos algunos inconvenientes

Lo ideal es no conectar cargas superiores a 20-30 W, pues aunque si se compra en kit o ya montado el fabricante hable de 100w, el ULN2003 tiene un límite de corriente que ronda los 500 mA por salida, lo que generalmente restringe la potencia entregada a cargas muy por debajo de 100W,

Asimismo destacar el principal inconveniente de este circuito inversor con CD4047 y ULN2003 , y es que genera una señal de salida en forma de onda cuadrada o cuadrada modificada, pero no una señal senoidal pura. Esto provoca varios efectos negativos, especialmente para dispositivos sensibles, como bombillas LED:

  • Acortamiento de la vida útil de las bombillas LED: Las bombillas LED están diseñadas para funcionar con señal senoidal limpia (corriente alterna estándar). La señal cuadrada contiene armónicos y picos abruptos que pueden dañar los componentes internos de las bombillas, como los drivers electrónicos, provocando fallos prematuros o incluso quemarlas.
  • Calentamiento y parpadeo: La forma de onda no senoidal puede causar que las bombillas parpadeen o generen ruido audible, además de producir un calentamiento excesivo en los circuitos de las bombillas.
  • Limitación para aparatos electrónicos sensibles: No solo las bombillas, sino otros dispositivos que requieren una alimentación senoidal estable pueden no funcionar correctamente o dañarse (p. ej., algunos cargadores, motores, o equipos electrónicos sensibles).
  • Menor eficiencia y más ruido eléctrico: La señal cuadrada provoca más interferencias electromagnéticas y disminuye la eficiencia en la conversión de energía comparado con un inversor de onda senoidal pura.

Este tipo de circuito es adecuado para pruebas, cargas resistivas simples como bombillas incandescentes o pequeños motores sin gran sensibilidad. Para aplicaciones con bombillas LED o equipos electrónicos sensibles, se recomienda un inversor con salida de onda senoidal pura, aunque son más complejos y costosos.

Consejos y precauciones al usar este circuito inversor

  • Precaución con la alta tensión: La salida del inversor genera 230V AC, lo cual es peligroso. Siempre manipula el circuito con cuidado, preferiblemente con el equipo desconectado y con conocimiento básico de electricidad.
  • Protección del circuito: Es recomendable incluir un fusible en la línea de alimentación para proteger la batería y los componentes en caso de cortocircuitos o sobrecargas.
  • Ventilación y disipación: Los componentes que manejan potencia, como el ULN2003 y los transistores o MOSFETs conectados, deben tener disipadores para evitar sobrecalentamiento.
  • Uso de transformador adecuado: Asegúrate de usar un transformador con la potencia adecuada (mínimo 10-20W) y con toma central bien diferenciada para evitar daños.
  • Calibración de frecuencia: Ajusta el potenciómetro para obtener una frecuencia cercana a 50 Hz, logrando una salida estable y adecuada para la mayoría de cargas pequeñas.
  • Carga limitada: Este tipo de inversores es apropiado para cargas pequeñas (bombillas, ventiladores, cargadores). No es adecuado para aparatos de gran potencia o con motores que puedan dañar el circuito.
  • Filtro de salida opcional: Agregar un condensador filtro en la salida puede ayudar a suavizar la forma de onda y proteger dispositivos sensibles.
  • Revisión en protoboard: Antes de realizar un montaje final, prueba el circuito en una protoboard o placa de pruebas para verificar funcionamiento sin riesgos.
  • Conocimiento previo: Si no tienes experiencia con circuitos de corriente alterna o alta tensión, busca asesoría o realiza el proyecto con supervisión.