Usos supercondensadores


En un post anterior   hablábamos de las múltiples ventajas del usos de los condensadores  como son  prácticamente ilimitada ciclo de vida,elevada potencia específica; tiempo de cargas en segundos, carga simple, excelente rendimiento de carga y descarga de baja temperatura y seguros (al no contener productos químicos ácidos o corrosivos)

Una de las aplicaciones interesantes de los supercondensadores es el uso como fuente de energía ya que  somos capaces de poder gestionar la carga de una manera muy rápida limitada por la corriente máxima que queremos que circule así como también gracias a un convertidor dc-dc aplanar la salida de esta .

Veamos en este post algunos ejemplos reales de aplicaciones comerciales de estos componentes

 

 

Alimentación  con carga ultrarápida para Arduino

Afortunadamente  los precios bajan   y por fin en   nuestros diseños podemos añadir los supercondensadores , pues  actualmente  es posible adquirir un supercondensador de la marca  ILS  de 2.7 V y un capacidad   500 F por menos de 8€ en Amazon

Las medidas   son de  35 x 60 mm  con un peso de 68 gr

supercondensador

Para alimentar una placa Arduino , Netduino o una Raspberry pi   hay que combinar dos en serie , con lo que la capacidad total resultante sera de 250F  /5.4V   mas que suficiente para alimentar   una placa Arduino durante 20 horas (con un LED). ! Y  puede recargar los dos  condensadores en apenas dentro de 30 segundos con una fuente convencional de 5VDC!.

Por supuesto  ademas  estos supercondensadores se puede utilizar en juguetes eléctricos, módems inalámbricos, controladores de motor, terminales portátiles, duplicadores (calefacción rápida), audios de coche, controladores remotos (carga auto-eléctrica), AMR (lectura automática de medidores), alimentación ininterrumpida Válvulas, actuadores, velocidad del viento (control de paso), dispositivos de alarma / seguridad.

 

 

Cámara de vigilancia para coche

 

camara
Utilizar un supercondensador como  fuente de alimentación  ( es decir no una   batería interna) es muy interesante  en un vehículo  en primer lugar porque estos soportan  mucho mayores rangos de temperatura para que usted no tenga  que preocuparse por  el sobrecalentamiento de su cámara  lo que lo convierte en la elección ideal para los conductores en climas calurosos.

Ademas  en las baterías tradicionales la duración de la batería especialmente se degrada con el tiempo, de hecho  con tan sólo meses de uso , el acortamiento la vida de la batería comienza a notarse   hasta terminar fallando , de modo que  las baterías  son a menudo el primer componente de una cámara salpicadero a fallar, requiriéndose costosas  reparaciones.

Mediante el uso de un supercondensador como  fuente de alimentación, el modelo  a118-c prescinde de  las  baterías tradiciones  usando un  supercondensador o como su fuente de alimentación que le permite soportar hasta  140 °F  otorgandole  por tanto una mejor tolerancia a temperaturas extremas y una mayor durabilidad

camarabis

 

El A118  es extremadamente compacto y  se combina a la perfección con el exterior del espejo, haciendo que parezca que cualquier otra parte de su coche. El soporte de la cámara se fija al parabrisas con un adhesivo de doble cara incluido, lo que le permite deslizar su cámara fácilmente  fuera de la posición de grabación

Algunas de su características:

  • Grabacion en Full HD de 1080p de grabación de vídeo a 30 fps y 720p a 60 fps con visión nocturna, tecnología WDR y detección de movimiento automático
  • Angulo extendido de visión 170 ° – proporcionado calidad de sus grabaciones con una panorámica que abarca ambos lados de la carretera, y su entorno
  • Integra chip Novatek NT96650 
  • Altavoz integrado
  • Cuenta con Chipset Aptina AR0330 con lente  proporcionando imágenes con bajo consumo de energía, compresión de vídeo de alta definición y suave
  • Pantalla HD de 1.5″

 

En resumen   el A118 es una innovadora  cámara para coche  alimentada por supercondensador  que   permite grabar en alta definición 1080p de resolución de 1080p a 30 fps o 720p a 60 fps. durante el día que cuenta con un diseño compacto y contorneado para disimilar cámara oculta  pareciéndose a cualquier otra parte de su coche.

Por cierto el precio es muy similar al de otras cámaras: unos 51€ en Amazon

 

 

 

Atornilladores electricos

Una aplicación interesante es un destornillador eléctrico equipado con el supercondensador como fuente de energia

atornillador

Al parecer el único destornillador inalámbrico  que equipa supercondensadores es el  BLUCAVE DSD-46FL-2BLU Flashcell  que pesa menos de 1 libra, que gracias  a su tecnología Super Capacitor FlashCell, es uno de los destornilladores tecnológicamente más avanzados del planeta pues en  tan sólo 60 segundos, usted estará en su manera de completar esos trabajos de trabajo ligero en ningún momento.

Su publicidad alude a no esperar más horas para cargar su taladro o destornillador inalámbrico con baterías. Sorprendentemente, el destornillador inalámbrico BluCave FlashCell no usa baterías! Es ecológico y recarga al menos 100.000 veces.
También puede dejar que el destornillador inalámbrico BluCave FlashCell se siente en la base de carga y continúe cargando sin perder ninguna capacidad de tiempo de ejecución. Eso significa que no hay pérdida de memoria.

Carastericticas

  • 60 segundos de carga rápida
  • Peso ligero bajo 1lb.
  • Manija de 2 posiciones
  • Nueva tecnología FlashCell Super Capacitor
  • No necesita baterías – nunca!
  • Incluye 5 piezas de accionamiento: PH1, PH2, PZ1, PZ2, FLAT 1/2 «y extensor
  • 4,6 voltios
  • Par de giro máximo: 3.32 ft-lb
  • 110-120V AC
  • Velocidad sin carga: 200 RPM
  • Ecológico
  • 100.000 recargas
  • Diseñado para caber en el gabinete de transporte BluCave – utiliza 3 de 10 ranuras
  • Incluye funda blanda con logotipos bordados BluCave y FlashCell
  • Manual de seguridad y funcionamiento incluido

 

Este atornillador  claramente se ve encarecido por el supercondensador con el cuenta , pero si tenemos en cuenta que la vida de este componente  es prácticamente ilimitada quizás no tenga tan mal precio ( 116€ en Amazon)

 

Por lo visto ya son muchos  fabricantes que empiezan  a usar este tipo de tecnología ,por lo que confiemos que pronto todos nuestro gadgets se alimenten con supercondensadores

Si conoce algún otro gadget que se alimente con supercondensadores no dude en compartirla con toda la comunidad !Gracias!

 

 

Alarma inteligente de Humos


Gracias al sw de Cayenne es posible construir equipos muy avanzados sin necesidad de programar nada con un aspecto gratamente muy profesional. Ademas, si sopesamos la gran potencia de calculo de la Raspberrry Pi, junto sus grandes posibilidades de expansión y conectividad ,obtenemos una gran combinación de hardware y software, las cual sin duda nos va a permitir realizar proyectos realmente interesantes .

Sabemos la gravedad que puede suponer un incendio, por lo que es sumamente importante disponer de medidas en los edificios de detección eficaces para protegerlos contra la acción del fuego.

 

En este post  vamos a intentar abordar el grave problema de los incendios desde una perspectiva completamente diferente usando para ello una Raspberry pi 2, un hardware especifico consistente en un DS18B20 , un detector de  gas y un buzzer  junto con  la plataforma  Cayenne.

Tradicionalmente los detectores de incendios difieren en función de los principio de activación siendo los mas habituales los de Tipo Óptico basado en células fotoeléctricas ,las cuales, al oscurecerse por el humo o iluminarse por reflexión de luz en las partículas del humo, disparando una sirena o alarma.Asimismo existen detectores de calor

La solución que se propone se basa en detectores ter micos al ser los mas precisos ,al que se ha añadido para aumentar la fiabilidad y mejorar la flexibilidad un doble sensor permitiendo de esta manera poder modificar los parámetros de disparo con un enorme facilidad como vamos a ver aparte de poder transmitir la información en múltiples formatos y formas hasta nunca vistas.

COMPONENTES NECESARIOS

Para montar la solución propuesta necesitamos los siguientes elementos:

  • Zumbador de 5V (cuesta menos de 1€ en Amazon)
  • DS18B20  (unos 3€)
  • Resistencia de 4k7 1/4 w
  • Sensor de Co2 basado en MQ4 (cuesta menos de 2€ en Amazon)
  • Raspberry Pi 2 o superior
  • Fuente 5V /1A para la Rasberry Pi

Otros

  • Cable de red
  • Caja de plástico para contener el conjunto
  • Cable de cinta ( se puede reusar un cable de cinta procedente de un interfaz ide de disco)

La solución propuesta se basa en usar una Raspberry Pi y un pequeño hardware de control que conectaremos a los puertos de la GPIO,pero, antes de empezar con el hardware adicional, deberemos ,si aun no lo ha creado todavía , generar una imagen de Raspbian para proporcionar un sistema operativo a la Raspberry Pi.Raspbian trae pre-instalado software muy diverso para la educación, programación y uso general, contando además con Python, Scratch, Sonic Pi y Java

Para instalar Raspbian se puede instalar con NOOBS o descargando la imagen del SO desde la url oficial. y copiando a la SD con el Win32DiskImager desde la página del proyecto en SourceForge

Prueba de acceso y creacion de cuenta

Creada la imagen del SO, ahora debemos insertar la micro-SD recién creada en su Raspberry Pi en el adaptador de micro-sd que tiene en un lateral . También deberá conectar un monitor por el conector hdmi, un teclado y ratón en los conectores USB, un cable ethernet al router y finalmente conectar la alimentación de 5V DC para comprobar que la Raspberry Pi arranca con la nueva imagen

Para comenzar la configuración de su Raspberry, lo primero es crear una cuenta gratuita en el portal cayenne-mydevices.com que servirá tanto para entrar en la consola web como para validarnos en la aplicación móvil. Para ello, vaya a la siguiente url http://www.cayenne-mydevices.com/ e introduzca lo siguintes datos:

  • Nombre,
  • Dirección de correo elctronica
  • Una clave de acceso que utilizara para validarse.

NOTA: las credenciales que escriba en este apartado le servirán tanto para acceder via web como por vía de la aplicación móvil

Instalación del agente

Una vez registrado , solamente tenemos que elegir la plataforma para avanzar en el asistente. Obviamente seleccionamos en nuestro caso Raspberry Pi pues no se distingue entre ninguna de las versiones ( ya que en todo caso en todas deben tener instalado Raspbian).

Para avanzar en el asistente deberemos tener instalado Raspbian en nuestra Raspberry Pi que instalamos en pasos anteriores .

Concluido el asistente , lo siguiente es instalar la aplicación móvil , que esta disponible tanto para IOS como Android. En caso de Android este es el enlace para su descarga en Google Play.

Es muy interesante destacar que desde la aplicación para el smartphone se puede automáticamente localizar e instalar el software myDevices Cayenne en su Raspberry Pi, para lo cual ambos ( smarphone y Raspberry Pi ) han de estar conectados a la misma red,por ejemplo la Raspberry Pi al router con un cable ethernet y su smartphone a la wifi de su hogar ( no funcionara si esta conectada por 3G o 4G) .

Una vez instalada la app , cuando hayamos introducido nuestras credenciales , si está la Raspberry en la misma red y no tiene instalado el agente, se instalara éste automáticamente .

Hay otra opción de instalar myDevices Cayenne en su Raspberry Pi, usando el Terminal en su Pi o bien por SSH.Tan sólo hay que ejecutar los dos siguientes comandos :

NOTA:la instalación del agente en su Raspberry Pi por comando, no es necesaria .Solo se cita aquí en caso de problemas en el despliegue automático desde la aplicacion movil.

Instalación del sensor temperatura

Para poder hacer de nuestra Raspberry Pi un detector eficaz de incendios necesitamos añadir sensores que nos permitan medir variables físicas del exterior, para en consecuencia actuar posteriormente

En primer lugar se ha optado por utilizar el sensor DS18B20 creado por Dallas Semiconductor  . Se trata de un termómetro digital, con una precisión que varía según el modelo pero que en todo caso es un componente muy usado en muchos proyectos de registro de datos y control de temperatura.Existen tres modelos, el DS1820, el DS18S20 y el DS18B20 pero sus principales diferencias se observan en la exactitud de lectura, en la temperatura, y el tiempo de conversión que se le debe dar al sensor para que realice esta acción.El DS1820, tiene, además del número de serie y de la interfaz de un conductor, un circuito medidor de temperatura y dos registros que pueden emplearse como alarmas de máxima y de mínima temperatura.

CONEXIÓN DEL DS18B20

El DS18B20 envía  al bus I2C la información de la temperatura exterior en grados C con precisión 9-12 bits, -55C a 125C (+/- 0.5C).a.

Para aprovechar las ventajas de la detección automática de Cayenne de sensores 1-wire, conectaremos este al puerto 4 GPIO (PIN 7) dado que el DS1820 transmite vía protocolo serie 1-Wire

Asimismo es importante conectar una resistencia de 4k7 de pull-up en la línea de datos ( es decir entre los pines 2 y 3 del DS18B20) .

La alimentación del sensor la tomaremos desde cualquiera de las dos conexiones de +5V de nuestra Raspberry (pines 2 o 4 ) y la conexión de masa por comodidad podemos tomarla del pin 9 de las Raspberry

¡Listo! Encienda su Raspeberry Pi y Cayenne automáticamente detectará el sensor DS18B20 y añadirá este a su panel de control

NOTA : Es importante reseñar que los dispositivos 1-Wire se identifican mediante un número (ID) único, razón por la que podríamos conectar varios en cascada, viajando la señal de todos ellos por la misma línea de datos necesitando una única resistencia de pull up para todo el montaje conectándose todos ellos en paralelo (respetando los pines obviamente). El software se encargará de “interrogar” al sensor/dispositivo adecuado.

Instalación de sensor de Co2

Para complementar nuestro detector se ha añadido un detector de gases basado en el circuito MQ4 .Este detector se puede montar un circuito con el sensor , o bien se puede adquirir con el sensor y el modulo de disparo con un led ya soldado, lo cual por su bajo coste  (menos de 2€ en Amazon  )es la opción más recomendada. Estos módulos permiten Dual-modo de señal de salida, es decir cuentan con dos salidas diferenciadas:

  • Salida analógica
  • Salida con sensibilidad de nivel TTL (la salida es a nivel alto si se detecta GLP, el gas, el alcohol, el hidrógeno y mas)

Estos módulos son de rápida a respuesta y recuperación ,cuentan con una buena estabilidad y larga vida siendo ideales para la detección de fugas de gas en casa o fabrica .Son ademas muy versátiles , pudiendo usarse para múltiples fines ,detectando con facilidad lo siguientes gases:

  • Gas combustible como el GLP
  • Butano
  • Metano
  • Alcohol
  • Propano
  • Hidrogeno
  • Humo
  • etc.

Algunas de las características del módulo:

  • Voltaje de funcionamiento: 5V DC
  • Rango de Detección: 300 a 10000 ppm
  • Salida TTL señal valida es baja
  • Tamaño: 32X22X27mm

CONEXIONES

Para conectar el  detector de gases a nuestra Raspberry Pi, optaremos por usar el puerto GPIO18 ( pin12) que conectaremos a la salida digital 2 del sensor ( marcado como OUT).

La alimentación del sensor la tomaremos desde cualquiera de las dos conexiones de +5V de nuestra Raspberry (pines 2 o 4 ) conectándo al pin 4 del sensor (marcado como +5v) y la conexión de masa por comodidad podemos tomarla del pin 9 de las Raspberry conectando este al pin1 del detector ( marcado como GND)

Respecto a Cayenne deberemos configurarlo como una entrada genérica como vamos a ver mas adelante.

PRUEBA DEL SENSOR

Para hacer una prueba rápida de que nuestro sensor es funcional :simplemente apuntar a unos cm del sensor con un bote de desodorante (no importa la marca), justo con un sólo disparo hacia el cuerpo del sensor. En ese momento debería encenderse el pequeño led que integra el sensor durante unos minutos para luego apagarse marcando de esta forma que realmente ha detectado el gas .

Ademas simultáneamente si podemos medir con un polímetro, veremos que el pin Out pasa a nivel alto , es decir pasa de 0V a unos 5V , volviendo a cero en cuanto se haya diluido el gas

 

Zumbador y montaje final

Ya tenemos los dos sensores, así que aunque podemos intereactuar ante variaciones de las lecturas de los sensores enviando correos o enviando SMS’s (como vamos a ver en el siguiente paso),es muy interesante añadir también un aviso auditivo que podemos activar cuando decidamos.

Para los avisos acústicos, lo mas sencillo es usar un simple zumbador de 5Vque podemos conectar directamente a nuestra Raspberry Pi sin ningún circuito auxiliar.

La conexión del positivo del zumbador normalmente de color rojo , lo haremos al GPIO 17 ( pin 11 ) de nuestra Raspberry y la conexión de masa por comodidad podemos tomarla del pin 9 de las Raspberry conectando este al pin de masa del buzzer ( de color negro)

 

 

Respecto a Cayenne deberemos configurarlo como un actuador genérico como vamos a ver mas adelante en el siguiente paso.

En cuanto a las conexiones dado las poquísimas conexiones de los dos sensores y el zumbador, lo mas sencillo ,a mi juicio, es usar un cable de cinta de 20+20 , que por ejemplo puede obtener de un viejo cable IDE de los usados para conectar antiguos discos duros cortándolo en la longitud que interese y conectando los cables a los sensores y al zumbador (observe que es muy importante respetar el orden de los pines del cable siendo el rojo el pin 1 y cuenta correlativamente).

El siguiente resumen indica todas las conexiones realizadas:

CABLE DE CINTA –> UTILIZACIÓN

  • pin9 (Gnd) –> pin1 DS1820,pin1 MQ4,
  • pin 7 (GPIO4)–> pin 2 DS1820 , resistencia 4k7
  • pin1 (+5V) –>pin 3 DS1820, resistencia 4k7, pin4 MQ4,cable rojo buzzer
  • pin 12(GPIO18)–> pin2 MQ4
  • pin11(GPIO17) –> cable negro buzzer

 

 

 

Configuración Cayenne

 Montado el circuito y nuestra Rasberry corriendo con Rasbian y el agente Cayenne ,únicamente nos queda configurar el sensor de gas y el buzzzer así como las condiciones o eventos que harán que disparen los avisos

Del sensor DS1820 no hablamos precisamente porque al estar conectado al bus one wire , el agente Cayenne lo detectara automáticamente presentándolo directamente sobre el escritorio sin necesidad de ningún acción más.

CONFIGURACION SENSOR GAS

Dado que no existe un sensor de estas características en la consola de Cayenne, lo mas sencillo es configurarlo como entrada genérico del tipo Digital Input y subtipo SigitalSensor.

Si ha seguido el circuito propuesto, los valores propuestos que debería configurar son los siguientes

  • Widget Name: Digital Input
  • Widget: Graph
  • Numero de decimals:0

En el apartado «Device Settings» pondremos:

  • Select GPIO: Integrated GPIO
  • Select Channel: Channel 18
  • Invert logic :check activado

Obviamente añadiremos estos valores y pulsaremos sobre el boton «save» para hacer efectiva esta configuración

CONFIGURACION ZUMBADOR
Dado que no existe un zumbador como tal en la consola de cayenne, lo mas sencillo es configurarlo como salida genérico del tipo RelaySwitch . Si ha seguido el circuito propuesto, los valores propuestos que debería configurar son los siguientes

  • Widget Name: Buzzer
  • Choose Widget: Button
  • Choose Icon: Light
  • Number de decimals:0

En el apartado «Device Settings» pondremos:

  • Select GPIO: Integrated GPIO
  • Select Channel: Channel 17
  • Invert logic :check deactivado

Obviamente añadiremos estos valores y pulsaremos sobre el boton «save» para hacer efectiva esta configuración

TRIGGERS
Si ha seguido todos los pasos anteriores tendremos en la consola de Cayenne nuestra placa Rasberry Pi con la información en tiempo real de la temperatura o detección de gas e incluso un botón que nos permite activar o desactivar a voluntad el zumbador .

Ademas por si fuera poco gracias a la aplicación móvil , también podemos ver en esta en tiempo real lo que están captando los sensores que hemos instalado y por supuesto activar o desactivar si lo deseamos el zumbador..

Pero aunque el resultado es espectacular todavía nos queda una característica para que el dispositivo sea inteligente : el pode interaccionar ante los eventos de una forma lógica,lo cual lo haremos a través de lo triggers , los cuales nos permitirán desencadenar acciones ante cambios en las variables medidas por los sensores.

A la hora de definir triggers en Cayenne podemos hacerlo tantodesencadenado acciones como pueden ser enviar corres de notificaciones o envio de SMS’s a los destinatarios acordados o bien actuar sobre las salidas.

Para definir un disparador en myTriggers,pulsaremos «New Trigger» y nos presentara dos partes:

  • IF ; aqui arrastraemos el desecadenante, lo cual necesariamene siempre sera la lectura de un sensor ( en uestro caso el termometro o el detector de gas)
  • THEN: aqui definiremos lo que queremos que se ejecute cuando se cumpla la condición del IF. Como comentábamos se pueden actuar por dos vías : se puede activar /desactivar nuestra actuador ( el buzzer) o también enviar correos o SMS’s

Como ejemplo se pueden definir lo siguientes triggers:

  • IF DS1820 <42º THEN RELE(channel17) =OFF
  • IF Channel18=ON THEN RELE(channel17) =ON
  • IF Channel18=ON THEN Send e-mail to…
  • IF DS2820>90º THEN Send e-mail to..
  • etc

Es obvio que las posibilidades son infinitas ( y las mejoras de este proyecto también), pero desde luego un circuito así es indudable la gran utilidad que puede tener.¿Se anima a replicarlo?

 

 

Más información aqui