Manejo de un robot con node.js


Node.js es un entorno en tiempo de ejecución multiplataforma de código abierto  para  servidor , aunque como vamos a ver,  se puede usar para otros propósitos . Fue creado con el enfoque de ser útil en la creación de programas de red altamente escalables, como por ejemplo, servidores web. 

Es un lenguaje de programación ECMAScript, asíncrono, con I/O de datos en una arquitectura orientada a eventos y basado en el motor V8 de Goog asi que desde este punto de vista Node.js es similar en su propósito a Twisted o Tornado de Python, Perl Object Environment de Perl, libevent o libev de C, EventMachine de Ruby, vibe.d de D y JEE de Java existe Apache MINA, Netty, Akka, Vert.x, Grizzly o Xsocket.

Como nota  muy diferenciadora,al contrario que la mayoría del código JavaScript, no se ejecuta en un navegador, sino en el servidor.

Asimismo Node.js implementa algunas especificaciones de CommonJS   e  incluye un entorno REPL para depuración interactiva

Tal es la potencia de  Node.js  que ya existen plataformas basadas en este entorno para intereactuar con placas como Arduino ,Linino. Intel Edison, Raspberry pi,etc  en aplicaciones de Robotica o plataformas de IoT

Johnny – Five    es una Plataforma JavaScript Robótica  e  IO  lanzada por bocoup en 2012  y mantenida por una comunidad de desarrolladores de software apasionados e ingenieros de hardware (más de 75 desarrolladores han hecho contribuciones a la construcción de éste).

onny

Como  ejemplo de «Hola Mundo»  con un LED parpadeante sencilla , el  siguiente ejemplo para Arduino nos muestra lo sencillo que es hacerlo en el entorno de Johnny Five :

 

var five = require("johnny-five");
var board = new five.Board();

board.on("ready", function() {
  var led = new five.Led(13);
  led.blink(500);
});

 

  • Ejecute el  códido Run: npm install johnny-five

 

Como ejemplo mas avanzado en el repositorio de github  (https://github.com/stylixboom/lr_motor ) Siriwat Kasamwattanarote   nos ensela  como podemos  controlar  un coche de juguete  directamente a través de SSH  (mediante  el terminal)  usando  Node.js.

Desde SSH no  se aceptan 2 teclas de flecha al mismo tiempo, es por eso que la forma en que gira a la izquierda / derecha no es tan suave (al cambiar las dos teclas en consecuencia) pero el funcionamiento es muy fluido

Los requerimientos son los siguientes:

 

Este proyecto es pues aprender a controlar dos motores ( izquierda – derecha) mediante el uso de la Raspberry Pi . El código proporcionado  está escrito en Node.js , y requiere un paquete de ‘ Pigpio ‘ para  acceder al puerto GPIO en la Raspberry Pi . ‘ Pulsación ‘ es escuchar a la entrada de teclado de la tecla de flecha ( arriba-abajo – izquierda – derecha) .

Este experimento apoya dos controladores de motor diferentes :

  • Toshiba – TB6612FNG Texas Instruments
  •  L293D

Notas:

-TB6612FNG es más eficiente , pero más caro (unos  10 $ ) , y se necesita soldadura .

 

TB6612FNG
Ref: http://www.robotshop.com/media/files/PDF/Datasheet%20713.pdf
Truth table
Input                           Output
IN1     IN2     PWM     STBY    OUT1    OUT2    Mode
H       H       H/L     H       L       L       Short brake
L       H       H       H       L       H       CCW
L       H       L       H       L       L       Short brake
H       L       H       H       H       L       CW
H       L       L       H       L       L       Short brake
L       L       H       H       OFF(High ohm)   Stop
H/L     H/L     H/L     L       OFF(High ohm)   Standby

-L293D es mucho más barato ( $ 0,6 ) y más fácil de utilizar con una placa.

L293D
Ref: http://www.robotplatform.com/howto/L293/motor_driver_1.html
Truth table
Input                   Function
PWM     IN1     IN2    
H       H       L       Reverse
H       L       H       Forward
H       H       H       Stop
H       L       L       Stop
L       X       X       Stop

En caso de usar la primera opción , este es el esquema seguido:
  Una vez montado el circuito y ya vez tenga el código descargado (https://github.com/stylixboom/lr_motor) ,simplemente para ejecutarlo use :  $ sudo node app_t.js

Finalmente en el vídeo que os dejo a continuación podemos ver el conjunto del  robot utilizando una Raspberry Pi combinando NodeJS y el controlador de motores. .

Reconocimiento de imagenes para Raspberry Pi


La famosa librería TensorFlow fue originalmente desarrollada por investigadores e ingenieros que trabajan  dentro de la organización de investigación de la máquina de Inteligencia de Google estando el sistema  diseñado para facilitar la investigación en el aprendizaje de máquina, y para que sea rápido y fácil de transición del prototipo de investigación al sistema de producción.

Aunque se piense que es una librería consolida (la ultima versión es la 10,Release 0)  , TensorFlow no está completa, pues está construida  pensando en ser  mejorada, y extendida. El equipo de desarrollo ha hecho una versión inicial del código fuente, y en la actualidad están haciendo esfuerzos internos de desarrollo a utilizar un repositorio público de los cambios del día a día realizados por el equipo en Google. Esperan construir una comunidad de código abierto activa que impulse el futuro de esta biblioteca, proveyendo de retroalimentación y contribuyendo activamente al código fuente.

 

Nuestro cerebro hacen que la visión parecen fácil pues no se necesita ningún esfuerzo para el ser humano de distinguir un león y un jaguar, leer una señal, o reconocer el rostro de un ser humano. Pero estos son en realidad problemas difíciles de resolver con un ordenador: sólo parece fácil porque nuestros cerebros son muy buenos en la comprensión de las imágenes.

En los últimos años el campo de aprendizaje de la máquina ha hecho enormes progresos en hacer frente a estos problemas difíciles. En particular, hemos encontrado que una especie de modelo  llamado convolutional neural network  puede lograr un rendimiento razonable en las tareas de reconocimiento visual duros igualando o superar el rendimiento humano en algunos dominios.

Los investigadores han demostrado un progreso constante en la visión por ordenador mediante la validación de su trabajo contra IMAGEnet ( un punto de referencia académica para la visión por ordenador). Modelos sucesivos siguen mostrando mejoras, y cada vez que ese consigue un  logro,el  resultado nuevo mejora el estado de la técnica: QuocNet , AlexNet , Inception (GoogLeNet) , BN-Inception-v2 . Los investigadores tanto internos como externos a Google han publicado artículos que describen todos estos modelos, pero los resultados son todavía difíciles de reproducir .En este momento se esta  dando el siguiente paso mediante la liberación de código para ejecutar el reconocimiento de imágenes en nuestro último modelo, Inception-v3 .

Inception-v3 está capacitado para el IMAGEnet grande Reconocimiento Visual Challenge utilizando los datos de 2012. Se trata de una tarea estándar en la visión por ordenador, donde los modelos tratan de clasificar las imágenes completas en 1000 clases , al igual que la «cebra», «dálmata», y «lavavajillas «. Por ejemplo, aquí están los resultados de AlexNet la clasificación de algunas imágenes:

 

Para comparar los modelos, examinamos la frecuencia con que el modelo no puede predecir la respuesta correcta como uno de sus 5 mejores conjeturas mediante el denominado «top-5 índice de error» . AlexNet ha logrado mediante el establecimiento de un top 5 , llegar  a una tasa de error del 15,3% en un dataset de validaciones de  2012 . BN-Inception-v2 alcanzan el 6,66% y  Inception-v3 alcanza el 3,46%.Karpathy intentó medir su propio rendimiento y  alcanzó el top-5 tasa de error de 5,1%.

Ahora vamos a ver  un ejemplo  en Python  para cómo utilizar Inception-v3 para  cómo clasificar las imágenes en 1000 clases en Python o C ++ . También es interesante saber cómo extraer características de nivel superior de este modelo que pueden ser reutilizado para otras tareas de visión.

 

Descargue el modelo  classify_image.py  de tensorflow.org cuando el programa se ejecute por primera vez. Usted necesitará unos 200 Mbs de espacio libre disponible en el disco duro.

Las siguientes instrucciones puede ejecutarla  suponiendo  que ha instalado TensorFlow de un paquete PIP y que su terminal reside en el directorio raíz TensorFlow.

cd tensorflow/models/image/imagenet python classify_image.py

El comando anterior clasificar una imagen suministrada de un oso panda.

Si el modelo se ejecuta correctamente, la secuencia de comandos producirá el siguiente resultado:

giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca (score = 0.88493) indri, indris, Indri indri, Indri brevicaudatus (score = 0.00878) lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens (score = 0.00317) custard apple (score = 0.00149) earthstar (score = 0.00127)

Si desea suministrar otras imágenes JPEG, puede hacerlo editando el  argumento  –image_file.

Si descarga los datos del modelo en un directorio diferente, tendrá que señalar –model_dir al directorio utilizado.

 

Como ejemplo de uso  se  puede  utilizar  una combinación de OpenCV junto con la librería TensorFlow de Google para utilizar redes de neuronas en Google Cloud para entrenar un modelo de clasificación en la nube.

El japones  Kazunori Sato  ha intentado clasificar verdura ( pepinos )   con el uso de esta  librería implementada  en una Raspberry Pi junto a una webcam para analizar visualmente cada  pieza de verdura  y poder clasificarlos  por tamaños  de una manera eficiente.

Mediante una pequeña máquina casera que han diseñado, a la que  han añadido varios  servos(para expulsar las  muestra clasificadas)  junto a  una cinta transportadora  para transportar las muestras ,  todos controlados  por la raspberry pi  consiguen una eficiencia teórica de más de 95% de acierto,   si bien como se puede ver en el ejemplo, el funcionamiento es algo lento.

En el siguiente video puede ver pues una aplicación practica de uso de esta librería:

 

 

 

 

Para obtener información sobre las redes neuronales en general, de Michael Nielsen su libro online gratis es un excelente recurso. Para las redes neuronales convolucionales, en particular, Chris Olah tiene algunas buenas entradas de blog , y el libro de Michael Nielsen tiene un gran capítulo que forman parte. Para obtener más información sobre la aplicación de redes neuronales convolucionales, puede saltar a la TensorFlow redes convolucionales profunda tutorial , o empezar un poco más suavemente con nuestra principiante ML o expertos ML tutoriales MNIST de arranque. Por último, si desea ponerse al día sobre la investigación en esta área, se puede leer la obra reciente de todos los documentos referenciados en este tutorial.» Michael Nielsen es un excelente recurso. Para las redes neuronales convolucionales, en particular, Chris Olah tiene algunas buenas entradas de blog , y el libro de Michael Nielsen tiene un gran capítulo sobre estas.

Para obtener más información sobre la aplicación de redes neuronales convolucionales, puede mirar el tutorial de TensorFlow sobre  redes convolucionales  o empezar un poco más suavemente con  ML