IoT con Raspberry Pi sin escribir código


 

En este ejemplo vamos a ver lo facil qeu es configurar un sensor de temperatura:el DS18B20  usando el agente de Cayenne .

Todo lo que necesita hacer es configurar el circuito y tenerlo conectado a la Pi,el cual es bastante sencillo pues  se usa un bus de 1hilo cuyo diagrama del circuito viene a continuación. También se puede agregar un LED al pin # 17 con una resistencia de 100 ohmios al carril de tierra.
Raspberry Pi Diagrama de Sensor de Temperatura
Ahora cuando lo conecte  si tiene instalado el agente de Cayenne  el sensor sera detectado automáticamente y agregado al  tablero de mandos. Lo que es bastante bueno sin embargo, si no se agrega automáticamente, entonces tendrá que agregar manualmente. Para agregarlo manualmente, haga lo siguiente.

  1. Ir a añadir en la esquina superior izquierda del tablero de instrumentos.
  2. Seleccione el dispositivo en el cuadro desplegable.
  3. Encuentre el dispositivo, en este caso es un sensor de temperatura DS18B20.
  4. Agrega todos los detalles del dispositivo. En este caso necesitará la dirección de esclavo para el sensor. Para obtener la dirección de esclavo introduzca lo siguiente en el terminal de Pi.
    cd /sys/bus/w1/devices ls
  5. La dirección del esclavo será similar a esta 28-000007602ffa . Simplemente copie y pegue esto en el campo de esclavo dentro del panel de Cayenne.
  6. Una vez introducida seleccione sensor de complemento.
  7. El sensor debe aparecer ahora en el tablero de instrumentos.
  8. Si necesita personalizar el sensor, presione el diente y aparecerá algunas opciones.
  9. También puede ver estadísticas / gráficos. Por ejemplo, el sensor de temperatura puede trazar datos en tiempo real y mantendrá los datos históricos también.

Si también desea agregar un LED que pueda encender y apagar a través del tablero de instrumentos, siga las siguientes instrucciones.

  1. Ahora vamos a agregar un dispositivo más. Excepto que éste será un LED.
  2. Vuelva tan para agregar el nuevo dispositivo.
  3. Ahora busque la salida digital y selecciónela.
  4. Para este dispositivo seleccione su Pi, tipo de widget es el botón, el icono puede ser lo que quieras, y luego seleccione integrado GPIO. Finalmente, el canal es el pin / canal al que está conectado nuestro LED. Para este ejemplo es el pin # 17. (Esta es la numeración GPIO de los pines).
  5. Ahora presione el botón add sensor.
  6. Ahora puede girar el pin GPIO alto y bajo desde el tablero de mandos y también utilizarlo en un disparador.
  7. Ahora estamos listos para crear nuestro primer gatillo.

Ahora debería tener dos dispositivos en el tablero de mandos que deberían verse así.
Dispositivos añadidos

Configuración de su primer  trigger

Los disparadores en Cayenne son una forma de hacer que tu pi reaccione a un cambio en el Pi mismo oa través de un sensor conectado a él. Esto podría ser algo tan simple como una temperatura superior a un cierto valor o incluso sólo su Pi va fuera de línea. Como se podría imaginar esto puede ser muy poderoso en la creación de dispositivos inteligentes que reaccionan a los alrededores. Por ejemplo, si la habitación se pone demasiado fría, encienda el calentador.

El proceso de agregar un disparador es súper simple como vamos a ver aontunuacion:

  1. Ir a añadir en la esquina superior izquierda del tablero de instrumentos.
  2. Seleccionar un trigger desde el cuadro de abajo.
  3. El nombre de su gatillo, voy a llamar a la mía «demasiado caliente».
  4. Ahora arrastrar y soltar su Frambuesa Pi desde la esquina izquierda en el caso de la caja.
  5. Por debajo de esto seleccionar el sensor de temperatura y tienen casilla junto a «por encima de la temperatura» seleccionado. (Si las opciones del dispositivo no se muestran simplemente actualizar la página)
  6. Ahora en el cuadro de selección a continuación, notificación y agregar una dirección de correo electrónico o número de teléfono de un mensaje de texto (puede agregar ambos).Asegúrese de marcar las casillas de verificación también.

Dispara demasiado caliente

  1. Ahora haga clic en «Save trigger».
  2. Ahora se debe guardar y le enviará una alerta cada vez que el sensor de temperatura es más de 40 grados Celsius.
  3. También puede arrastrar el Raspberry Pi en el cuadro a continuación, y tienen que hacer muchas cosas, incluyendo el control de los dispositivos de salida. Por ejemplo, en mi circuito tengo un LED que se activará cuando la temperatura supere los 40 grados Celsius.
  4. Para hacer clic en el gatillo de disparo LED de nueva situada en la parte superior de la página. Nombre esta activar el gatillo LED.
  5. Ahora arrastrar el Pi en el caso de la caja y luego seleccione el sensor de temperatura de nuevo con 40 grados centígrados por encima.
  6. Ahora arrastrar el Raspberry Pi en cuadro a continuación. Seleccione nuestra salida digital y marque la casilla de verificación activada.
  7. Ahora haga clic en Save trigger.
  8. Ahora, cada vez que nuestro sensor de temperatura conectado al Pi informe una temperatura superior a 40 grados Celsius, enviará un correo electrónico y encenderá el LED.También necesitarás agregar otro disparador para apagar el LED cuando caiga por debajo de los 40 pero lo dejaré por ahora y pasaré a eventos.

Mydevices cayennem Disparadores

Eventos

Los eventos en Raspberry Pi Cayenne son algo similar a los desencadenantes, pero son dependientes del tiempo en lugar de confiar en un cambio en un sensor o el propio dispositivo. La configuración de un evento es bastante fácil,asi que por ejemplo vamos a ver cómo configurar su Pi para reiniciarla una vez al mes.

  1. Ir a añadir en la esquina superior izquierda del tablero de instrumentos.
  2. Seleccionar evento en el cuadro de abajo.
  3. Ahora debería ver una pantalla con un calendario y un popup llamado nuevo evento.
  4. Ingrese los detalles de su evento. Por ejemplo, la mina se llama reinicio mensual y sucederá el primero de cada mes a las 2am. A continuación se muestra un ejemplo de la pantalla.

Cayenne eventos con detalles

  1. Una vez hecho esto, haga clic en Guardar.
  2. Ahora debería poder ver su evento en el calendario. Simplemente haga clic en él si desea editarlo.

Como usted podría imaginar los acontecimientos pueden ser bastante poderosos así que valdría la pena de mirar en éstos más. Un buen ejemplo de uso de eventos sería si necesita algo para ejecutar o encender. Otro ejemplo es algo como luces que necesitan ser encendidas en un momento específico.

Panel GPIO

El panel GPIO en Cayenne  le permite controlar y alterar los pines en el Pi.Por ejemplo, puede convertir un pin de ser una entrada a una salida y viceversa. También puede activar los pines de salida bajos y altos.
Panel Cayenne GPIO
Como se puede ver también hace que una gran hoja de referencia si necesita volver a ver y ver qué pins son los que necesita. También puede ver los dispositivos que están actualmente asignados a pines específicos. También puede ver el estado actual de un pin. (Por ejemplo, entrada o salida y baja o alta)

Escritorio remoto

Se puede conectar a la  Pi a través de Secure Shell o tambien   con VNC. Si ha  instalado cayenne también puede escritorio remoto a su Raspberry Pi a través del navegador web o a través de la aplicación móvil. Puede hacerlo simplemente haciendo lo siguiente.

  1. En el tablero de mandos encontrar el widget que dice «comandos».
  2. Dentro de este widget haga clic en acceso remoto.
  3. Ahora se conectará al Pi y abrirá una nueva ventana. Si una nueva ventana no abre su navegador probablemente lo bloqueó. Simplemente permita que cayenne.mydevices abra nuevas pestañas.
  4. Una vez hecho usted puede controlar su Pi como si estuviera allí con él.
  5. Uno de los profesionales con el uso de Cayenne para escritorio remoto es que se puede acceder a ella en cualquier parte del mundo con bastante facilidad en lugar de la necesidad de configurar una VPN o abrir los puertos de su red.

Sin duda es un ejemplo muy sencillo pero que demuestra la gran potencia del agente de Cayenne para aplicaciones de IoT con su Raspberry Pi

 

Fuente   aqui

Alarma inteligente de Humos


Gracias al sw de Cayenne es posible construir equipos muy avanzados sin necesidad de programar nada con un aspecto gratamente muy profesional. Ademas, si sopesamos la gran potencia de calculo de la Raspberrry Pi, junto sus grandes posibilidades de expansión y conectividad ,obtenemos una gran combinación de hardware y software, las cual sin duda nos va a permitir realizar proyectos realmente interesantes .

Sabemos la gravedad que puede suponer un incendio, por lo que es sumamente importante disponer de medidas en los edificios de detección eficaces para protegerlos contra la acción del fuego.

 

En este post  vamos a intentar abordar el grave problema de los incendios desde una perspectiva completamente diferente usando para ello una Raspberry pi 2, un hardware especifico consistente en un DS18B20 , un detector de  gas y un buzzer  junto con  la plataforma  Cayenne.

Tradicionalmente los detectores de incendios difieren en función de los principio de activación siendo los mas habituales los de Tipo Óptico basado en células fotoeléctricas ,las cuales, al oscurecerse por el humo o iluminarse por reflexión de luz en las partículas del humo, disparando una sirena o alarma.Asimismo existen detectores de calor

La solución que se propone se basa en detectores ter micos al ser los mas precisos ,al que se ha añadido para aumentar la fiabilidad y mejorar la flexibilidad un doble sensor permitiendo de esta manera poder modificar los parámetros de disparo con un enorme facilidad como vamos a ver aparte de poder transmitir la información en múltiples formatos y formas hasta nunca vistas.

COMPONENTES NECESARIOS

Para montar la solución propuesta necesitamos los siguientes elementos:

  • Zumbador de 5V (cuesta menos de 1€ en Amazon)
  • DS18B20  (unos 3€)
  • Resistencia de 4k7 1/4 w
  • Sensor de Co2 basado en MQ4 (cuesta menos de 2€ en Amazon)
  • Raspberry Pi 2 o superior
  • Fuente 5V /1A para la Rasberry Pi

Otros

  • Cable de red
  • Caja de plástico para contener el conjunto
  • Cable de cinta ( se puede reusar un cable de cinta procedente de un interfaz ide de disco)

La solución propuesta se basa en usar una Raspberry Pi y un pequeño hardware de control que conectaremos a los puertos de la GPIO,pero, antes de empezar con el hardware adicional, deberemos ,si aun no lo ha creado todavía , generar una imagen de Raspbian para proporcionar un sistema operativo a la Raspberry Pi.Raspbian trae pre-instalado software muy diverso para la educación, programación y uso general, contando además con Python, Scratch, Sonic Pi y Java

Para instalar Raspbian se puede instalar con NOOBS o descargando la imagen del SO desde la url oficial. y copiando a la SD con el Win32DiskImager desde la página del proyecto en SourceForge

Prueba de acceso y creacion de cuenta

Creada la imagen del SO, ahora debemos insertar la micro-SD recién creada en su Raspberry Pi en el adaptador de micro-sd que tiene en un lateral . También deberá conectar un monitor por el conector hdmi, un teclado y ratón en los conectores USB, un cable ethernet al router y finalmente conectar la alimentación de 5V DC para comprobar que la Raspberry Pi arranca con la nueva imagen

Para comenzar la configuración de su Raspberry, lo primero es crear una cuenta gratuita en el portal cayenne-mydevices.com que servirá tanto para entrar en la consola web como para validarnos en la aplicación móvil. Para ello, vaya a la siguiente url http://www.cayenne-mydevices.com/ e introduzca lo siguintes datos:

  • Nombre,
  • Dirección de correo elctronica
  • Una clave de acceso que utilizara para validarse.

NOTA: las credenciales que escriba en este apartado le servirán tanto para acceder via web como por vía de la aplicación móvil

Instalación del agente

Una vez registrado , solamente tenemos que elegir la plataforma para avanzar en el asistente. Obviamente seleccionamos en nuestro caso Raspberry Pi pues no se distingue entre ninguna de las versiones ( ya que en todo caso en todas deben tener instalado Raspbian).

Para avanzar en el asistente deberemos tener instalado Raspbian en nuestra Raspberry Pi que instalamos en pasos anteriores .

Concluido el asistente , lo siguiente es instalar la aplicación móvil , que esta disponible tanto para IOS como Android. En caso de Android este es el enlace para su descarga en Google Play.

Es muy interesante destacar que desde la aplicación para el smartphone se puede automáticamente localizar e instalar el software myDevices Cayenne en su Raspberry Pi, para lo cual ambos ( smarphone y Raspberry Pi ) han de estar conectados a la misma red,por ejemplo la Raspberry Pi al router con un cable ethernet y su smartphone a la wifi de su hogar ( no funcionara si esta conectada por 3G o 4G) .

Una vez instalada la app , cuando hayamos introducido nuestras credenciales , si está la Raspberry en la misma red y no tiene instalado el agente, se instalara éste automáticamente .

Hay otra opción de instalar myDevices Cayenne en su Raspberry Pi, usando el Terminal en su Pi o bien por SSH.Tan sólo hay que ejecutar los dos siguientes comandos :

NOTA:la instalación del agente en su Raspberry Pi por comando, no es necesaria .Solo se cita aquí en caso de problemas en el despliegue automático desde la aplicacion movil.

Instalación del sensor temperatura

Para poder hacer de nuestra Raspberry Pi un detector eficaz de incendios necesitamos añadir sensores que nos permitan medir variables físicas del exterior, para en consecuencia actuar posteriormente

En primer lugar se ha optado por utilizar el sensor DS18B20 creado por Dallas Semiconductor  . Se trata de un termómetro digital, con una precisión que varía según el modelo pero que en todo caso es un componente muy usado en muchos proyectos de registro de datos y control de temperatura.Existen tres modelos, el DS1820, el DS18S20 y el DS18B20 pero sus principales diferencias se observan en la exactitud de lectura, en la temperatura, y el tiempo de conversión que se le debe dar al sensor para que realice esta acción.El DS1820, tiene, además del número de serie y de la interfaz de un conductor, un circuito medidor de temperatura y dos registros que pueden emplearse como alarmas de máxima y de mínima temperatura.

CONEXIÓN DEL DS18B20

El DS18B20 envía  al bus I2C la información de la temperatura exterior en grados C con precisión 9-12 bits, -55C a 125C (+/- 0.5C).a.

Para aprovechar las ventajas de la detección automática de Cayenne de sensores 1-wire, conectaremos este al puerto 4 GPIO (PIN 7) dado que el DS1820 transmite vía protocolo serie 1-Wire

Asimismo es importante conectar una resistencia de 4k7 de pull-up en la línea de datos ( es decir entre los pines 2 y 3 del DS18B20) .

La alimentación del sensor la tomaremos desde cualquiera de las dos conexiones de +5V de nuestra Raspberry (pines 2 o 4 ) y la conexión de masa por comodidad podemos tomarla del pin 9 de las Raspberry

¡Listo! Encienda su Raspeberry Pi y Cayenne automáticamente detectará el sensor DS18B20 y añadirá este a su panel de control

NOTA : Es importante reseñar que los dispositivos 1-Wire se identifican mediante un número (ID) único, razón por la que podríamos conectar varios en cascada, viajando la señal de todos ellos por la misma línea de datos necesitando una única resistencia de pull up para todo el montaje conectándose todos ellos en paralelo (respetando los pines obviamente). El software se encargará de “interrogar” al sensor/dispositivo adecuado.

Instalación de sensor de Co2

Para complementar nuestro detector se ha añadido un detector de gases basado en el circuito MQ4 .Este detector se puede montar un circuito con el sensor , o bien se puede adquirir con el sensor y el modulo de disparo con un led ya soldado, lo cual por su bajo coste  (menos de 2€ en Amazon  )es la opción más recomendada. Estos módulos permiten Dual-modo de señal de salida, es decir cuentan con dos salidas diferenciadas:

  • Salida analógica
  • Salida con sensibilidad de nivel TTL (la salida es a nivel alto si se detecta GLP, el gas, el alcohol, el hidrógeno y mas)

Estos módulos son de rápida a respuesta y recuperación ,cuentan con una buena estabilidad y larga vida siendo ideales para la detección de fugas de gas en casa o fabrica .Son ademas muy versátiles , pudiendo usarse para múltiples fines ,detectando con facilidad lo siguientes gases:

  • Gas combustible como el GLP
  • Butano
  • Metano
  • Alcohol
  • Propano
  • Hidrogeno
  • Humo
  • etc.

Algunas de las características del módulo:

  • Voltaje de funcionamiento: 5V DC
  • Rango de Detección: 300 a 10000 ppm
  • Salida TTL señal valida es baja
  • Tamaño: 32X22X27mm

CONEXIONES

Para conectar el  detector de gases a nuestra Raspberry Pi, optaremos por usar el puerto GPIO18 ( pin12) que conectaremos a la salida digital 2 del sensor ( marcado como OUT).

La alimentación del sensor la tomaremos desde cualquiera de las dos conexiones de +5V de nuestra Raspberry (pines 2 o 4 ) conectándo al pin 4 del sensor (marcado como +5v) y la conexión de masa por comodidad podemos tomarla del pin 9 de las Raspberry conectando este al pin1 del detector ( marcado como GND)

Respecto a Cayenne deberemos configurarlo como una entrada genérica como vamos a ver mas adelante.

PRUEBA DEL SENSOR

Para hacer una prueba rápida de que nuestro sensor es funcional :simplemente apuntar a unos cm del sensor con un bote de desodorante (no importa la marca), justo con un sólo disparo hacia el cuerpo del sensor. En ese momento debería encenderse el pequeño led que integra el sensor durante unos minutos para luego apagarse marcando de esta forma que realmente ha detectado el gas .

Ademas simultáneamente si podemos medir con un polímetro, veremos que el pin Out pasa a nivel alto , es decir pasa de 0V a unos 5V , volviendo a cero en cuanto se haya diluido el gas

 

Zumbador y montaje final

Ya tenemos los dos sensores, así que aunque podemos intereactuar ante variaciones de las lecturas de los sensores enviando correos o enviando SMS’s (como vamos a ver en el siguiente paso),es muy interesante añadir también un aviso auditivo que podemos activar cuando decidamos.

Para los avisos acústicos, lo mas sencillo es usar un simple zumbador de 5Vque podemos conectar directamente a nuestra Raspberry Pi sin ningún circuito auxiliar.

La conexión del positivo del zumbador normalmente de color rojo , lo haremos al GPIO 17 ( pin 11 ) de nuestra Raspberry y la conexión de masa por comodidad podemos tomarla del pin 9 de las Raspberry conectando este al pin de masa del buzzer ( de color negro)

 

 

Respecto a Cayenne deberemos configurarlo como un actuador genérico como vamos a ver mas adelante en el siguiente paso.

En cuanto a las conexiones dado las poquísimas conexiones de los dos sensores y el zumbador, lo mas sencillo ,a mi juicio, es usar un cable de cinta de 20+20 , que por ejemplo puede obtener de un viejo cable IDE de los usados para conectar antiguos discos duros cortándolo en la longitud que interese y conectando los cables a los sensores y al zumbador (observe que es muy importante respetar el orden de los pines del cable siendo el rojo el pin 1 y cuenta correlativamente).

El siguiente resumen indica todas las conexiones realizadas:

CABLE DE CINTA –> UTILIZACIÓN

  • pin9 (Gnd) –> pin1 DS1820,pin1 MQ4,
  • pin 7 (GPIO4)–> pin 2 DS1820 , resistencia 4k7
  • pin1 (+5V) –>pin 3 DS1820, resistencia 4k7, pin4 MQ4,cable rojo buzzer
  • pin 12(GPIO18)–> pin2 MQ4
  • pin11(GPIO17) –> cable negro buzzer

 

 

 

Configuración Cayenne

 Montado el circuito y nuestra Rasberry corriendo con Rasbian y el agente Cayenne ,únicamente nos queda configurar el sensor de gas y el buzzzer así como las condiciones o eventos que harán que disparen los avisos

Del sensor DS1820 no hablamos precisamente porque al estar conectado al bus one wire , el agente Cayenne lo detectara automáticamente presentándolo directamente sobre el escritorio sin necesidad de ningún acción más.

CONFIGURACION SENSOR GAS

Dado que no existe un sensor de estas características en la consola de Cayenne, lo mas sencillo es configurarlo como entrada genérico del tipo Digital Input y subtipo SigitalSensor.

Si ha seguido el circuito propuesto, los valores propuestos que debería configurar son los siguientes

  • Widget Name: Digital Input
  • Widget: Graph
  • Numero de decimals:0

En el apartado «Device Settings» pondremos:

  • Select GPIO: Integrated GPIO
  • Select Channel: Channel 18
  • Invert logic :check activado

Obviamente añadiremos estos valores y pulsaremos sobre el boton «save» para hacer efectiva esta configuración

CONFIGURACION ZUMBADOR
Dado que no existe un zumbador como tal en la consola de cayenne, lo mas sencillo es configurarlo como salida genérico del tipo RelaySwitch . Si ha seguido el circuito propuesto, los valores propuestos que debería configurar son los siguientes

  • Widget Name: Buzzer
  • Choose Widget: Button
  • Choose Icon: Light
  • Number de decimals:0

En el apartado «Device Settings» pondremos:

  • Select GPIO: Integrated GPIO
  • Select Channel: Channel 17
  • Invert logic :check deactivado

Obviamente añadiremos estos valores y pulsaremos sobre el boton «save» para hacer efectiva esta configuración

TRIGGERS
Si ha seguido todos los pasos anteriores tendremos en la consola de Cayenne nuestra placa Rasberry Pi con la información en tiempo real de la temperatura o detección de gas e incluso un botón que nos permite activar o desactivar a voluntad el zumbador .

Ademas por si fuera poco gracias a la aplicación móvil , también podemos ver en esta en tiempo real lo que están captando los sensores que hemos instalado y por supuesto activar o desactivar si lo deseamos el zumbador..

Pero aunque el resultado es espectacular todavía nos queda una característica para que el dispositivo sea inteligente : el pode interaccionar ante los eventos de una forma lógica,lo cual lo haremos a través de lo triggers , los cuales nos permitirán desencadenar acciones ante cambios en las variables medidas por los sensores.

A la hora de definir triggers en Cayenne podemos hacerlo tantodesencadenado acciones como pueden ser enviar corres de notificaciones o envio de SMS’s a los destinatarios acordados o bien actuar sobre las salidas.

Para definir un disparador en myTriggers,pulsaremos «New Trigger» y nos presentara dos partes:

  • IF ; aqui arrastraemos el desecadenante, lo cual necesariamene siempre sera la lectura de un sensor ( en uestro caso el termometro o el detector de gas)
  • THEN: aqui definiremos lo que queremos que se ejecute cuando se cumpla la condición del IF. Como comentábamos se pueden actuar por dos vías : se puede activar /desactivar nuestra actuador ( el buzzer) o también enviar correos o SMS’s

Como ejemplo se pueden definir lo siguientes triggers:

  • IF DS1820 <42º THEN RELE(channel17) =OFF
  • IF Channel18=ON THEN RELE(channel17) =ON
  • IF Channel18=ON THEN Send e-mail to…
  • IF DS2820>90º THEN Send e-mail to..
  • etc

Es obvio que las posibilidades son infinitas ( y las mejoras de este proyecto también), pero desde luego un circuito así es indudable la gran utilidad que puede tener.¿Se anima a replicarlo?

 

 

Más información aqui